Математическое моделирование
Математической моделью операции называется формальные соотношения, устанавливающие связь принятого критерия эффективности с действующими факторами операции. Чтобы построить математическую модель, необходимо оценить количественно проявления рассматриваемых факторов и указать группы рассматриваемых параметров, формально представляющие эти факторы.
Математические модели могут иметь вид формул, систем уравнений или неравенств, а также таблиц, числовых последовательностей, геометрических образов, отражающих зависимость между критерием эффективности операции и теми параметрами, которые представляют учтенные действующие факторы [8].
При построении модели (как математической так и физической) можно выделить следующие основные этапы.
. Постановка цели моделирования. определение набора четко сформулированных согласованных и реализуемых целей - существенное условие успешного моделирования.
. Анализ реальной системы, процесса или явления с целью формирования модели. Для анализа система разбивается на составляющие части (реальные и воображаемые), которые ограничиваются от окружающих факторов.
При этом ограниченная система должна обладать всеми свойствами, присущими ей в реальной действительности. Кроме того, система, составленная из совокупности составляющих ее частей, должна представлять единое целое.
. Структуризация и построение модели. При физическом моделировании это может быть макет моделируемой системы. При имитационном моделировании это будет моделирующий алгоритм. Аналитическая модель будет записана в виде математических соотношений.
. Верификация модели состоит в проведении исследования с помощью отладочных и проверочных тестов, предназначенных для выявления ошибок в структуре модели. Верификация может закончиться неудачно даже и в случаях правильной ее структуризации. В этом случае говорят об ошибке 1-го рода (отбрасывается приемлемый вариант). Возможны ошибки 2-го рода, когда принимается ошибочный вариант. Любые ошибки, выявленные на этом этапе верификации приводят к возвращению на этап структуризации.
. Оценка пригодности модели проводится сравнением откликов проверенной модели с соответствующими откликами или изменениями, снятыми с реальной системы. Это значит, что экспериментирование может проводится как с моделью, так и с моделируемой системой. Если реальная система недоступна для экспериментирования, то обращаются к неформальным приемам, используют известные характеристики. Расхождения откликов модели и реальной системы свидетельствуют об ошибках на стадии анализа, т.е. необходимо вернуться к просмотру результатов 2-го этапа [7].
. Планирование эксперимента. На проверенной модели возможна постановка экспериментов для получения новой информации о моделируемой системе.
. Обработка результатов эксперимента, формирование на основе выводов и оформление соответствующей документации на прием модели пользователем.
Рассмотрим принципы построения математических моделей. Основными объектами исследования операций являются аналитические математические модели (в дальнейшем просто математические модели). При этом необходимо отметить, что построение математической модели изучаемого процесса или явления не означает еще, что построена задача исследования операций. С помощью одной модели можно исследовать, изучать разные операции. Только постановка и формализация цели операции, в результате которой формулируется оптимизационная задача, однозначно определяет задачу исследования операций [3].
Построение математической модели - это искусство, поэтому нет строгого алгоритма, который был бы пригоден для построения любой модели. Можно лишь выделить ключевые моменты этого построения [13].
. Составление математической модели начинается с выбора переменных, совокупность числовых значений которых однозначно определяет один из вариантов процесса. Эти переменные называются параметрами задачи или элементами решения. Следует иметь в виду, что иной раз от удачного выбора этих переменных зависит простота модели и, следовательно, удобство дальнейшего анализа.