Математическое моделирование
. После выбора переменных составляются ограничения, которым должны удовлетворять эти переменные. При этом нужно следить, чтобы в модель были включены все ограничительные условия, и в то же время, чтобы не было ни одного лишнего или записанного в более жесткой, чем требуется условиями задачи, форме.
. Составляется целевая функция, которая в математической форме, отражает критерий эффективности выбора лучшего варианта, другими словами, ставится цель операции на модели, полученной во втором пункте.
Классификация математических моделей может проводиться с различных точек зрения. В зависимости от этого получаются различные типы моделей.
. Если в основе классификации лежат соотношения, которые выражают зависимости между состояниями системы и параметрами системы, то выделяют:
а) детерминированные модели - состояние системы в заданный момент времени однозначно определяется через параметры системы.) стохастические модели - однозначно определяются лишь распределения вероятностей для состояний системы при заданных распределениях вероятностей для начальных условий.
. Если параметры задачи принимают дискретные значения (причем дискретность может быть любой природы: от целочисленного значения до произвольного набора значений), то говорят о дискретной модели. Непрерывная модель в случае непрерывных значений параметров задачи.
. Одноэкстремальной моделью называется математическая модель задачи, имеющей один критерий эффективности. Если задача исследования операций имеет несколько критериев эффективности, то соответствующая модель называется многоэкстремальной моделью.
. Задачей линейного программирования называется математическая модель, в которой функция и ограничения выражаются линейными функциональными зависимостями. Если среди функциональных зависимостей есть хотя бы одна нелинейная, то математическая модель будет задачей нелинейного программирования. Если функциональные зависимости - выпуклые функции, то имеет место задача выпуклого программирования. Если целевая функция является квадратичной функцией, а ограничения - линейные функции то получается задача квадратичного программирования [11].